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Abstract. In our model, spinless fermions (or hardcore bosons) on a square lattice hop to nearest neighbor
sites, and also experience a hard-core repulsion at the nearest neighbor separation. This is the simplest
model of correlated electrons and is more tractable for exact diagonalization than the Hubbard model. We
study systematically the dilute limit of this model by a combination of analytical and several numerical
approaches: the two-particle problem using lattice Green functions and the t-matrix, the few-fermion
problem using a modified t-matrix (demonstrating that the interaction energy is well captured by pairwise
terms), and for bosons the fitting of the energy as a function of density to Schick’s analytical result for dilute
hard disks. We present the first systematic study for a strongly-interacting lattice model of the t-matrix,
which appears as the central object in older theories of the existence of a two-dimensional Fermi liquid
for dilute fermions with strong interactions. For our model, we can (Lanczos) diagonalize the 7× 7 system
at all fillings and the 20 × 20 system with four particles, thus going far beyond previous diagonalization
works on the Hubbard model.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.10.Pm Fermions in reduced dimensions
(anyons, composite fermions, Luttinger liquid, etc.) – 05.30.Jp Boson systems – 74.20.Mn Nonconventional
mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism,
marginal Fermi liquid, Luttinger liquid, etc.)

1 Introduction

Since the discovery of the high-temperature superconduc-
tors in 1986, there has been intense study of a number
of two-dimensional models that are believed to model the
electronic properties of the CuO2 plane of the cuprate su-
perconductors, for example, the Hubbard model, the t−J
model, and the Heisenberg model [1,2]. Two-dimensional
quantum models with short-range kinetic and interaction
terms are difficult to study. In one dimension, there are ex-
act solutions using the Bethe ansatz and a host of related
analytical techniques [3], and there is a very accurate nu-
merical method, the density-matrix renormalization group
(DMRG) [4], that can be applied to large systems rela-
tively easily. In two dimensions, on the other hand, there
are few exact solutions (one famous nontrivial case is the
Hubbard model with one hole in a half-filled background,
the Nagaoka state [5]), and current numerical methods are
not satisfactory (quantum Monte Carlo is plagued by the
negative sign problem [1] at low temperatures and at many
fillings of interest and the DMRG in two dimensions [6] is
still in early development stage).
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The most reliable method for studying complicated
quantum systems is exact diagonalization, which means
enumerating all basis states and diagonalizing the result-
ing Hamiltonian matrix. Of course, this method is com-
putationally limited by the growth of the Hilbert space
which is in general exponential in the number of parti-
cles and the lattice size. The 4 × 4 Hubbard model with
16 electrons, 8 spin-up and 8 spin-down, after reduction
by particle conservation, translation, and the symmetries
of the square, has 1,310,242 states in the largest matrix
block [7], and can be diagonalized using the well-known
Lanczos method. The Hubbard model has been diagonal-
ized for the 4×4 lattice (see e.g., Ref. [8]), and at low filling
(four electrons) for 6×6 [9] with extensive employment of
symmetries.

In this paper we present a model of spinless fermions
(or hardcore bosons) which contains the basic ingredients
of short-range hopping on a lattice and interaction but is
simpler than the Hubbard model. As the interaction is re-
placed by a hard-core, the Hilbert space is reduced and we
can diagonalize the 7×7 system at all fillings, or the 20×20
system with four particles, which is many lattice constants
larger than the tractable size for diagonalizations of the
Hubbard model. We have systematically studied this sys-
tem at the dilute limit, and the main results of this study
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are the following. First, using lattice Green functions we
solve analytically the problems of two and a few particles
and check the results for large lattices using diagonaliza-
tion (Sect. 2). We find that the few-particle energies can
largely be approximated by two-particle energies when the
lattice size is large. Second, we derive the t-matrix formal-
ism for particles with nearest-neighbor hopping and use it
to solve the problems of two particles (Sect. 3) and a few
fermions (Sect. 4). Comparing our analytical results with
exact diagonalization data, we confirm that in the dilute
limit, almost all of the interaction correction is accounted
for by the two-body terms of the t-matrix approximation.
This result contributes to the understanding of the valid-
ity of Fermi liquid theory in a finite-system context. Third,
we study the energy per particle curve for two-dimensional
dilute bosons and check Schick’s well-known analytical re-
sults [10] using exact diagonalization (Sect. 5). Our find-
ings here complement Monte Carlo studies [11,12]. To our
best knowledge, this work appears to be the first system-
atic study of the dilute limit of this spinless fermion model.

1.1 The spinless fermion model

We have asked the question: Is there a model that contains
the basic ingredient of short-range hopping and interaction
but is simpler, in the exact diagonalization sense, than the
Hubbard model? The answer is yes: we can neglect the spin.
We obtain the following Hamiltonian for spinless fermions,

H = −t
∑
〈i,j〉

(
c†icj + c†jci

)
+ V

∑
〈i,j〉

n̂in̂j , (1.1)

where c†i and ci are spinless fermion creation and anni-
hilation operators at site i, n̂i = c†i ci the number oper-
ator, t the nearest-neighbor hopping amplitude, and V
the nearest-neighbor interaction. Note that with spinless
fermions, there can be at the most one particle per site;
no on-site interaction (as that in the Hubbard model) is
possible, and we have included in our Hamiltonian nearest-
neighbor repulsion.

The spinless fermion model, equation (1.1), is a two-
state model, and the number of basis states for a N -site
system is 2N , which is a significant reduction from the 4N

of the Hubbard model. We can further reduce the number
of basis states by taking the nearest-neighbor interaction
V = +∞, i.e., infinite repulsion, which excludes nearest
neighbors, giving roughly 2N/2 states.

The spinless fermion model with infinite repulsion
equation (1.1) contains a significant reduction of the
Hilbert space. After using particle conservation and trans-
lation symmetry (but not point group symmetry), the
largest matrix for the 7 × 7 system has 1, 906, 532 states
(for 11 particles), and we can therefore compute for all
fillings the 7 × 7 system whereas for the Hubbard model
4× 4 is basically the limit [13]. This of course means that
for certain limits we can also go much further than the
Hubbard model, for example, we can handle four particles
on a 20 × 20 lattice where the number of basis states is

2, 472, 147. This extended capability with our model has
enabled us to obtain a number of results that are difficult
to obtain with the Hubbard model.

An added feature of our model is that the basis set
for the spinless fermion problem is identical to that for
the hardcore boson problem, because with hardcore re-
pulsion, there can be at the most one boson at one site
also. Therefore, without computational difficulty, we can
study numerically both the spinless fermion and hardcore
boson problem.

Spinless fermions can also be realized in experiments,
for example, the spin polarized 3He due to a strong mag-
netic field, or ferro or ferri-magnetic electronic systems
where one spin-band is filled [16].

Considering the tremendous effort that has been de-
voted to the Hubbard model and the close resemblance
of our model, equation (1.1), to the Hubbard model, it is
surprising that works on this spinless model have been
rather sparse, though it has been commented that the
spinless model offers considerable simplifications [17]. The
one-dimensional spinless fermion model with finite repul-
sion is solved exactly using Bethe ansatz [18]. The infinite-
dimensional problem is studied in reference [19]. A very
different approach using the renormalization group for
fermions is done in reference [20]. A Monte Carlo study
of the two-dimensional model at half-filling only and low
temperatures is in reference [21], which, dating back to
1985, is one of the earliest quantum Monte Carlo simu-
lations for fermions. (It is no coincidence that they chose
the model with the smallest Hilbert space.) The prior work
most comparable to ours may be the studies of four spin-
less electrons in a 6×6 lattice, with Coulomb repulsion, by
Pichard et al. [22]; their motivation was the Wigner crys-
tal melting and the competition of Coulomb interactions
with Anderson localization when a disorder potential is
turned on.

In two separate publications, we have studied the dense
limit of this two-dimensional model of spinless fermions
(or hardcore bosons) with infinite nearest-neighbor re-
pulsion [14,23]. There, near half-filled [24], stripes (that
are holes lining up across the lattice) are natural objects.
The present paper focuses on the dilute limit, treating
the problem of a few particles. One of the goals of these
papers is to advertise this model of spinless fermions to
the strongly-correlated electron community, as we believe
that it is the simplest model of correlated fermions and
deserves more research effort and better understanding.

1.2 The t-matrix

At the dilute limit of our model, the scattering t-matrix is
of fundamental importance. For two particles, we expect
that, at least when the potential V is small, we can write
a perturbative equation for energy,

E = E(q1) + E(q2) +∆E(q1,q2), (1.2)

which is to say that the exact interacting energy of two
particles is the noninteracting energy E(q1)+ E(q2), for a
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pair of momenta q1 and q2, plus a correction term∆E due
to the interaction V . And with more than two particles, at
least when the particle density is low, we expect to have

E =
∑
q

E(q) +
1
2

∑
q,q′

∆E(q,q′). (1.3)

Equation (1.3) is central in Fermi liquid theory, where it
is justified by the so-called “adiabatic continuation” idea,
which says that interacting fermion states correspond one-
to-one to noninteracting ones as we slowly switch on a
potential.

In the boson case, because many bosons can occupy
one quantum mechanical state and form a condensate,
equation (1.3) should be modified, but with only two
bosons, we expect equation (1.2) should be valid (in that
the correction vanishes in the dilute limit). Equations (1.2)
and (1.3) are used when we look at a list of noninteracting
energies and draw correspondences with the interacting
energies, the energy shift being packaged in the term ∆E:
the t-matrix term.

We are not aware of a systematic study of the t-matrix
for a lattice model. In this paper, we present the first such
study for the two-particle problem in Section 3 (for bosons
and fermions) and the few-fermion problem in Section 4.
We check the t-matrix results with exact diagonalization
data and show that our t-matrix on a lattice is the sum
of the two-body scattering terms to infinite order.

2 The two-particle problem

The two-particle problem has appeared in many differ-
ent contexts. The most familiar one is the hydrogen atom
problem in introductory quantum mechanics textbooks.
The two-magnon problem is closely related mathemati-
cally to our two-particle problem, and it has been solved in
arbitrary dimensions for ferromagnets (see e.g., Ref. [25]).
Another important two-particle problem is the Cooper
problem, with two electrons in the presence of a Fermi
sea (see e.g., Ref. [26]). And motivated by the possi-
bility of Cooper pair formation in high-temperature su-
perconductors, there have also been a number of stud-
ies on bound states on a two-dimensional lattice [27–32].
The two-electron problem in the plain two-dimensional
repulsive Hubbard model is studied in reference [33], and
ground state energy in the large-lattice limit is obtained
analytically.

In this section, we present a rather complete
calculation for the two-particle problem in our model,
treating both bosons and fermions. We calculate eigenen-
ergies for all states for a finite-size lattice, and our calcu-
lation is more complicated than the Hubbard model [33]
case because of nearest-neighbor (in place of on-site) in-
teraction. Where the Green function in the Hubbard case
was a scalar object, in our case it is replaced by a 4 × 4
matrix, corresponding to the four nearest neighbor sites
where the potential acts. This Green function study of the
two-particle problem is closely related to the treatment of

the two-electron problem in the Hubbard model [33] and
that in an extended Hubbard model [31]. We will show the
use of lattice symmetry and recursion relations to simplify
the problem with nearest-neighbor interactions. Note that
bound states are not of interest, since they do not exist
(with two particles) under the infinite repulsive interac-
tion in our model (see Sect. 3.5).

2.1 Preliminary

In this two-particle calculation, we will work in momen-
tum space, and we will start with a Hamiltonian more
general than equation (1.1) [31],

H = T + U, (2.1)

T =
∑
r1r2

t(r2 − r1)c†r1
cr2 , (2.2)

U =
∑
r1r2

V (r2 − r1)c†r1
cr1c

†
r2
cr2 . (2.3)

Here we have allowed hopping and interaction between
any two lattice sites, but we require that both depend
only on the separation between the two vectors and both
have inversion symmetry. That is t(r1, r2) = t(r2 − r1),
t(−r) = t(r), V (r1, r2) = V (r2 − r1), and V (−r) = V (r).
In momentum space, equations (2.2) and (2.3) become,

T =
∑
p

E(p)c†pcp, (2.4)

U =
1

2N

∑
pp′k

V (k)c†pc
†
p′cp′+kcp−k, (2.5)

where

E(p) =
∑
r

t(r)eipr, (2.6)

V (k) =
∑
r

V (r)eikr, (2.7)

with E(−p) = E(p) and V (−k) = V (k). Equations (2.2)
and (2.3) reduce to our nearest-neighbor Hamiltonian
equation (1.1) if we take,

t(r) =

{
−t, r = (±1, 0)(0,±1),
0, otherwise,

(2.8)

V (r) =

{
V, r = (±1, 0)(0,±1),
0, otherwise,

(2.9)

where we have taken the lattice constant to be unity [34],
and the nearest-neighbor vectors will be called

R1 = (1, 0),R2 = (−1, 0),R3 = (0, 1),R4 = (0,−1).
(2.10)

Then we have,

E(p) = −2t(cos px + cos py), (2.11)
V (k) = 2V (cos kx + cos ky). (2.12)
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Note that the structure of later equations depends sensi-
tively on having four sites in equation (2.9) where V (r) �=
0, but does not depend much on the form of equation (2.8)
and the resulting dispersion equation (2.11).

Using momentum conservation of equation (2.1), the
two-particle wave function that we will use is,

|ψ〉 =
∑
q

g(q)|q,P − q〉, (2.13)

where the sum is over the whole Brillouin zone, and the
coefficient g(q) satisfies,

g(P− q) = sbfg(q), (2.14)

where sbf = 1 for bosons and −1 for fermions.

2.2 Green function equations

Applying the more general form of the Hamiltonian oper-
ator equations (2.4) and (2.5) to the state equation (2.13),
the Schrodinger equation (E − T )|ψ〉 = U |ψ〉 becomes

(E−E(q)−E(P−q))g(q) =
1
N

∑
k

V (q−k)g(k). (2.15)

Equation (2.15) is a matrix equation Ag = Eg where
Aqk = (E(q) + E(P − q))δqk + V (q − k)/N . If V is not
infinity, this N ×N matrix A can be diagonalized, and E
and g(q) are respectively the eigenvalue and eigenvector.
To deal with V = +∞, we need some further manipula-
tions.

We consider the case when E �= E(q) + E(P − q), for
any q, which is to say, the energy E is not the energy of
a noninteracting pair. The (lattice) Fourier transform of
the coefficients g(q) is

g̃(r) =
∑
q

e−iq·rg(q); (2.16)

this is just the real-space wavefunction in terms of the
relative coordinate r. Define the lattice Green function,

G(E,P; r, r′) =
1
N

∑
q

eiq·(r′−r)

E − E(q) − E(P − q)
, (2.17)

then after dividing the first factor from both sides of our
Schrodinger equation, equation (2.15), and Fourier trans-
forming, we obtain

g̃(r) =
∑
r′
G(E,P; r, r′)V (r′)g̃(r′). (2.18)

In the following we return to the nearest-neighbor po-
tential V (r) in equation (2.9). The Green function sum in
equation (2.18) then has only four terms,

g̃(r) =
∑

j

G(E,P; r,Rj)(V g̃(Rj)), (2.19)

summed over the separations in equation (2.10). If we also
restrict r to the four nearest-neighbor vectors [35], then
equation (2.19) becomes,

g̃(Ri) =
∑

j

G(E,P;Ri,Rj)(V g̃(Rj)). (2.20)

If we define the 4 × 4 matrix,

Gij(E,P) = G(E,P;Ri,Rj), (2.21)

and a 4 × 1 vector φj = g̃(Rj), then we obtain a simple
matrix equation,

(I − G(E,P)V )φ = 0. (2.22)

We can also rewrite this equation as an equation for energy
using the determinant,

det(I − G(E,P)V ) = 0. (2.23)

With V = +∞, we have even simpler equations

G(E,P)(V φ) = 0, (2.24)

and
detG(E,P) = 0. (2.25)

Notice we write V φ to denote the limit as V → ∞; it would
not do to write simply φ in equations (2.22) and (2.24),
since φ→ 0 as V → ∞ (being the amplitude of the relative
wavefunction at the forbidden separations {Ri}).

For the Hubbard model, there is only on-site interac-
tion, so V (r) is nonzero only when r = 0, and the sum
in equation (2.18) has only one term. Equation (2.20) is
simply a scalar equation, which, after g̃ cancels from both
sides of the equation and using equation (2.17), gives,

1 =
V

N

∑
q

1
E − E(q) − E(P − q)

, (2.26)

which is exactly the result in reference [33].

2.2.1 Simplifications for rectangular boundaries

We specialize to the case of total momentum P = 0
and rectangular-boundary lattices. We have from equa-
tions (2.17) and (2.21),

Gij(E) =
1
N

∑
q

cos(qx(Rjx −Rix)) cos(qy(Rjy −Riy))
E − 2E(q)

,

(2.27)
where the potential is nonzero on the sites {Ri} given
by equation (2.10) and in the last step we have used the
symmetry properties of the dispersion relation E(qx, qy) =
E(qx,−qy) = E(−qx, qy). Obviously equation (2.27) is a
function of displacements Rj − Ri, which (in view of
Eq. (2.10) can be (0,0), (1,1), (2,0), or any vector related
by square symmetry. It is convenient for this and later
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sections to define a new notation for the Green function
Gij , emphasizing its dependence on Rj − Ri = (m,n),

Γ (E,m, n) =
1
N

∑
q

cos(mqx) cos(nqy)
E + 4 cos qx + 4 cos qy

, (2.28)

where the sum is over the N wavevectors q =
(2πlx/Lx, 2πly/Ly) with 0 ≤ lx < Lx and 0 ≤ ly < Ly

(for one Brillouin zone), and we have used the expression
for E(q) from equation (2.11) (and taken t = 1).

This Green function for rectangular-boundary lattices
satisfies the following reflection properties,

Γ (E,m, n) = Γ (E,−m,n)
= Γ (E,m,−n) = Γ (E,−m,−n). (2.29)

And if we have a square lattice (Lx = Ly) we also have

Γ (E,m, n) = Γ (E, n,m), (2.30)

and equation (2.27) can be written as,

Gij(E) = Γ (E,Rjx −Rix, Rjy −Riy). (2.31)

Using the reflection properties of Γ (E,m, n), equa-
tion (2.29), and the definition equation (2.31), our Green
function matrix becomes,

Gij(E) =



a c b b
c a b b
b b a d
b b d a


 , (2.32)

where a = Γ (E, 0, 0), b = Γ (E, 1, 1), c = Γ (E, 2, 0), and
d = Γ (E, 0, 2). The eigenvalues and eigenvectors of this
matrix are,

λf1 = a− c, (1,−1, 0, 0)
λf2 = a− d, (0, 0, 1,−1)

λb1,b2 = a+
c+ d

2
±
√

16b2 + (c− d)2

2
,

(v1,2, v1,2, 1, 1) (2.33)

where v1 and v2 are complicated functions of a, b, c, and d.
The exact energy E makes the matrix Gij(E) singu-

lar, which means that one of the eigenvalues has to be
zero. From equation (2.24), the null eigenvector of G is
V φ = V (g̃(R1), g̃(R2), g̃(R3), g̃(R4)), in terms of {Ri}
as in equation (2.10). The relative wavefunction should
be odd or even under inversion , depending on statistics,
i.e. g̃(−r) = sbfe

iP·rg̃(r) which follows immediately from
equations (2.16) and (2.14). Inversion, acting on nearest-
neighbor vectors equation (2.10), induces R1 ↔ R2 and
R3 ↔ R4; thus with P = 0, we should have V φ1 = −V φ2

and V φ3 = −V φ4 for fermions, and V φ1 = V φ2 and
V φ3 = V φ4 for bosons. Inspecting the eigenvectors we
obtained in equation (2.33), we see that those correspond-
ing to λf1,f2 are antisymmetric under inversion – cor-
responding to a “p-wave-like” (relative angular momen-
tum 1) state for fermions. Setting λf1 = 0, we get a = c,

or setting λf2 = 0 a = d, which respectively mean

Γ (E, 0, 0) − Γ (E, 2, 0) = 0, or (2.34)
Γ (E, 0, 0) − Γ (E, 0, 2) = 0. (2.35)

Associated with the even eigenvectors are λb1,b2 which are
identified as boson eigenvalues.

2.2.2 Simplifications for square boundaries

The boson eigenvalues, equation (2.33), are rather com-
plicated for general rectangular-boundary lattices. For a
square-boundary lattice, using equation (2.30), we get
c = d in the matrix equation (2.32), which makes the
fermion eigenvalues λf1,f2 degenerate. The boson eigen-
values in equation (2.33) simplify greatly to λb1 = a+2b+c
and λb2 = a− 2b+ c, which means that the boson energy
equations are,

Γ (E, 0, 0) + 2Γ (E, 1, 1) + Γ (E, 2, 0) = 0, (2.36)
Γ (E, 0, 0)− 2Γ (E, 1, 1) + Γ (E, 2, 0) = 0. (2.37)

The corresponding eigenvectors simplify too, to (1, 1, 1, 1)
and (1, 1,−1,−1) respectively, which may be described
as “s-wave-like” and “d-wave-like”, i.e. relative angular
momentum 0 and 2.

2.3 Large-L asymptotics for two-boson energy

Equations (2.34, 2.35, 2.36) and (2.37) are much better
starting points for analytical calculations than the original
determinant equation (2.25). In the center of the problem
is the lattice Green function Γ (E,m, n) defined in equa-
tion (2.28). Many of the lattice calculations come down
to evaluating these lattice Green functions [28–32,36]. In
this section, we derive the large-lattice two-boson energy
using the recursion and symmetry relations of the Green
function Γ (E,m, n).

The Green function Γ (E,m, n) for general m and n
and finite lattice are difficult to evaluate. The good thing is
that there are a number of recursion relations connecting
the Green functions at different m and n [37,38]. These
are trivial to derive after noting that equation (2.17) (for
P = 0) can be written

[E−(4+∆2
r)−(4+∆′2

r )]G(E, 0; r, r′) = δr=0δr′=0 (2.38)

where ∆2
r is the discrete Laplacian, (∆2

r + 4)f(r) ≡∑
i f(r+Ri) for any function f(r), where the sum is over

neighbor vectors equation (2.10). The two recursion rela-
tions that we will use are

E Γ (E, 0, 0) + 4Γ (E, 1, 0) + 4Γ (E, 0, 1) = 1, (2.39)
Γ (E, 0, 0) + 2Γ (E, 1, 1) + Γ (E, 2, 0)

+
1
2
E Γ (E, 1, 0) = 0. (2.40)
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Using equations (2.30, 2.39) and (2.40), the boson equa-
tion (2.36) for square-boundary lattices simplifies to

Γ (E, 0, 0) =
1
E
, (2.41)

with eigenvector (1, 1, 1, 1).
Next we compute the leading form of Γ (E, 0, 0) for

large L of a square-boundary lattice. The calculation is
close to that in reference [33] for the Hubbard model. We
define E = −8 + ∆E. Because the lowest energy of an
independent particle is E(0) = −4, ∆E is the energy cor-
rection to two independent particle energy at zero momen-
tum. Then we have, from equation (2.28),

Γ (E, 0, 0) =
1
N

∑
q

1
E + 4 cos qx + 4 cos qy

,

= − 1
4N

∑
q

1
2 − cos qx − cos qy −∆E/4

,

≈ 1
L2∆E

− 1
4π

∫ π

2π/L

dq

q

=
1

L2∆E
− lnL

4π
+ const. (2.42)

We should discuss the number of approximations we have
made to extract this leading dependence in L. First except
in the q = 0 term we have ignored the ∆E term, assuming
it is small as compared to q2 (with q �= 0). This is justified
as we only want the leading term in the large-L limit. Us-
ing an integral for a lattice sum is another approximation.
We choose the lower limit of integration to be 2π/L corre-
sponding to the first wavevectors after (0, 0) is taken out
of the sum. We also used the quadratic approximation for
the energy dispersion E(q) appearing in the denominator.

Using the boson energy equation (2.41) and the large-
L limit of the Green function equation (2.42), we get,

1
−8 +∆E

≈ 1
L2∆E

− lnL
4π

+ const. (2.43)

In the large-L limit, ∆E → 0 (as it is the interaction
correction to the noninteracting energy), so we get, to the
leading order of L,

∆E =
4π

L2 lnL
. (2.44)

We will check equation (2.44) in Section 2.4.

2.4 Large-L asymptotics for few-particle energy

The procedure used in Section 2.3 for two bosons can also
be applied to problems with a few particles. For a few
particles on a large lattice with short-range (here nearest-
neighbor) interaction, two-particle interaction is the main
contribution to energy. We write for two particles,

E(2, L) = E0(2, L) +∆E(L). (2.45)

5 10 15 20 25 30
L

0.00
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0.02

0.03
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2(
E

−
E

0)
/M

/(
M

−
1)

M = 2 fermion
M = 3 fermion
M = 4 fermion
M = 5 fermion
M = 2 boson
M = 3 boson
M = 4 boson

Fig. 1. Boson and fermion 2(E(M, L)−E0(M, L))/(M(M−1))
versus L for M = 2, 3, 4, 5. All curves appear to converge at
large L. The fermion (p-wave) result is much less than the
boson result (s-wave). The M = 4 plot goes to L = 20 and the
M = 5 plot to L = 10. The boson M = 5 curve is too high to
be included in this plot.

Here in this section we use the notation E(M,L) and
E0(M,L) to denote the M -particle exact and noninter-
acting ground state energies respectively and emphasize
the dependence of ∆E on L by using ∆E(L). It is reason-
able to expect that the energy for M particles is the non-
interacting energy plus interaction corrections from the
M(M − 1)/2 pairs of particles. We then have,

E(M,L) ≈ E0(M,L) +
M(M − 1)

2
∆E(L). (2.46)

For bosons, E0(M,L) = −4M , because in the ground
state, all bosons occupy the zero-momentum state. On
the other hand, for fermions, because of Pauli exclusion,
no two fermions can occupy the same state, the noninter-
acting ground state is obtained from filling theM fermions
from the lowest state (k = 0) up.

Equation (2.46) implies that plotting 2(E(M,L) −
E0(M,L))/(M(M − 1)) versus L for different M should
all asymptotically at large L approach ∆E(L). In Fig-
ure 1, we do such plots, for bosons and fermions with
M = 2, 3, 4, 5. The fermion results, from p-wave scattering
(as our spinless fermion wave function has to be antisym-
metric), are much smaller than the boson results (bold
curves) from s-wave scattering.

Note that in our calculation for Γ (E, 0, 0) equa-
tion (2.42), we have neglected the contribution of ∆E in
the denominator except for the first term (q = 0). Now
with the leading form of ∆E equation (2.44), we can ob-
viously plug E ≈ −8+∆E into equation (2.42) to get the
form of the next term,

∆E =
4π

L2 lnL

(
A+

B

lnL
+

C

(lnL)2

)
. (2.47)
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Fig. 2. Boson (E(M, L) + 4M)L2 lnL/(2πM(M − 1)) versus
1/ lnL for M = 2, 3, 4, 5. Quadratic polynomial fitting is done
for M = 2 and M = 3. The fitted constant coefficients are
approximately one, and the other coefficients from M = 2 and
M = 3 are comparable.

Using equations (2.46) and (2.47), we get, for a few bosons
(E0(M,L) = −4M),

(E(M,L) + 4M)L2 lnL
2πM(M − 1)

= A+B
1

lnL
+ C

(
1

lnL

)2

.

(2.48)
In Figure 2, we plot (E(M,L)+4M)L2 lnL/(2πM(M−1))
versus 1/ lnL for M = 2, 3, 4, 5, using the boson data
in Figure 1. Quadratic polynomial fitting is done for
M = 2, 3, where we have more data than M = 4, 5.
The coefficient A ≈ 1 for both fits, implying, from equa-
tion (2.47), the leading-order term in ∆E(L) is indeed
4π/(L2 lnL). B and C from two fits are also comparable.

To summarize, from equations (2.46) and (2.47) and
fitting in Figure 2, we find that in our model the energy
of a small number M of bosons on a large L×L lattice is
to the leading order of L,

E(M,L) ≈ −4M +
M(M − 1)

2
4π

L2 lnL
. (2.49)

For two fermions on a large L × L lattice, the non-
interacting energy – the lead term in equation (2.49) – is
obviously lower for P = (0, 1) than for P = (0, 0). We have
not worked out the asymptotic behavior for P �= (0, 0).

3 The two-particle t-matrix

In Section 2.3 and Section 2.4, we studied the ground state
energy of a few particles on a large lattice, and we showed
that the energy of M particles can be approximated by

summing the energy of the M(M − 1)/2 pairs. In this
section, we reformulate the equations for two particles
and derive a scattering matrix, the t-matrix. The t-matrix
gives us equations of the form equations (1.2) and (1.3)
which are more precise statements of the ideas presented
in Sections 2.3 and 2.4. They apply to small lattices and
to excited states.

One possible objection to the formulas (1.2) and (1.3)
is that they appear to be perturbative, yet the interaction
potential in our problem is infinitely strong, so the first-
order (first Born approximation) scattering amplitude, be-
ing proportional to the potential, is infinite too. How-
ever, this singular potential scattering problem (e.g., hard-
sphere interaction in 3D) has been solved (see Ref. [39])
by replacing the potential with the so-called scattering
length, which is finite even when the potential is infinite.
As we review in Appendix A, a perturbation series (Born
series) can be written down (that corresponds to a series
of the so-called ladder diagrams) and even though each
term is proportional to the potential, the sum of all terms
(the t-matrix, ∆E in Eqs. (1.2) and (1.3)) is finite.

Because the t-matrix captures two-body interaction
effects, it is the centerpiece of dilute fermion and bo-
son calculations with strong interactions. Field-theoretical
calculations in both three and two dimensions are based
on the ladder diagrams and the t-matrix. See Fetter and
Walecka [40] for the 3D problem, Schick [10] for the 2D
boson problem and Bloom [41] the 2D fermion problem.
For lattice fermion problems, Kanamori [42] derived the
t-matrix for a tight-binding model that is essentially a
Hubbard model (this work is also described in Yosida [43]).
And in reference [25], the t-matrix is worked out explic-
itly for the Hubbard model, and Kanamori’s result is ob-
tained. Reference [25] also evaluated the t-matrix for the
dilute limit in three dimensions and obtained a functional
dependence on particle density.

Rudin and Mattis [44] used the t-matrix expression
derived in references [25,42] and found upper and lower
bounds of the fermion t-matrix in two dimensions in terms
of particle density. Rudin and Mattis’s result for the low-
density limit of the two-dimensional Hubbard model is of
the same functional form as Bloom’s diagrammatical cal-
culation for the two-dimensional fermion hard disks [41].
Since the discovery of high-temperature superconductors,
Bloom’s calculation has received a lot of attention because
of its relevance to the validity of the Fermi liquid descrip-
tion of dilute fermions in two dimensions. There have been
a number of works on the 2D dilute Fermi gas [45–47] and
on the dilute limit of 2D Hubbard model [48], all using
the t-matrix, but these results have not been checked by
numerical calculations.

3.1 Setup and symmetry

To have an equation in the form of equation (1.2), we start
with any pair of momentum vectors q1 and q2 and write
noninteracting energy of the pair E0 = E(q1)+ E(q2) and
total momentum P = q1 + q2. Because our Hamiltonian,
equations (2.4) and (2.5), conserves total momentum, we
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can restrict our basis states to |q,P − q〉. It is tempting
to take |q1,P−q1〉 and |q2,P−q2〉 as our nonperturbed
states, but there can be other two-particle states with the
same total momentum P and energy E0.

In fact, using our energy dispersion function equa-
tion (2.11), if we write q1 = (q1x, q1y) and q2 = (q2x, q2y),
and define q3 = (q1x, q2y) and q4 = (q2x, q1y) then we
have, q1+q2 = q3+q4 and E(q1)+E(q2) = E(q3)+E(q4).
We call this fact, that component exchanges in the pair
q1 and q2 give a pair q3 and q4 that have the same to-
tal momentum and energy, the pair component exchange
symmetry of our energy dispersion function E(q). This
symmetry is is due to the fact that our E(q) is separable
into a x part and a y part (i.e., E(q) = Ex(qx) + Ey(qy)
where Ex(q) = −2t cos q = Ey(q) in our model) [49].

The pair component exchange symmetry says that if
q1x �= q2x and q1y �= q2y, then the state |q3,q4〉, with
q3 and q4 defined above using component exchange, has
the same total momentum and energy as |q1,q2〉. The
degenerate perturbation theory requires |q3,q4〉 should be
included in the set of nonperturbed states with |q1,q2〉.

With a noninteracting two-particle energy E0 and to-
tal momentum P, we divide the N wavevectors into two
disjoint sets,

Q0 = {q | E(q)+E(P−q) = E0}, Q̄ = {q |q �∈ Q0}. (3.1)

Note that if q ∈ Q0 then P − q ∈ Q0. Denote N0 the
number of elements in Q0 and N̄ = N−N0 the number of
elements in Q̄. With this separation of q, our eigenstate
equation (2.13) becomes

|ψ〉 =
∑
q∈Q0

g(q)|q,P − q〉 +
∑
q∈Q̄

g(q)|q,P − q〉, (3.2)

where the first sum contains all states whose noninter-
acting energy is degenerate. Using the idea of degenerate
perturbation theory, we expect to be able to find a secular
matrix T , N0 ×N0, for the degenerate states in Q0 only,
and T will eventually be our momentum space t-matrix,
which we will derive now.

Note that using equation (2.14), the number of inde-
pendent states in the first sum of equation (3.2) is less
than N0. We include both |q,P − q〉 and |P − q,q〉 in
our calculation because we are considering boson and
fermion problems at the same time: the symmetric solu-
tion g(q) = g(P−q) is a boson solution and the antisym-
metric solution g(q) = −g(P − q) is a fermion solution
(see Eq. (2.14)).

3.2 Derivation of the t-matrix

Our purpose is to derive a set of closed equations for g(q),
the coefficient in our two-particle state equation (3.2),
with q ∈ Q0.

The Schrodinger equation for the two-particle state
|ψ〉, equation (2.15), can now be written as,

(E−E(q)−E(P−q))g(q) =
1
N

∑
r′
eiq·r′V (r′)g̃(r′), (3.3)

where g̃(r) is the Fourier transform of g(q) as defined in
equation (2.16).

For q ∈ Q̄, if we assume that E �= E(q) + E(P − q),
equation (3.3) becomes

g̃0(r) = g̃(r) −
∑
r′
Ḡ(E,P; r, r′)V (r′)g̃(r′), (3.4)

where we have defined a Green function for the set Q̄,

Ḡ(E,P; r, r′) =
1
N

∑
q∈Q̄

eiq·(r′−r)

E − E(q) − E(P − q)
, (3.5)

and a Fourier transform with vectors in Q0,

g̃0(r) =
∑
q∈Q0

e−iq·rg(q). (3.6)

By restricting to the nearest-neighbor repulsion poten-
tial equation (2.9), equation (3.4) becomes,

g̃0(r) = g̃(r) −
∑

j

Ḡ(E,P; r,Rj)V g̃(Rj) (3.7)

summed over neighbor vector equation (2.10). Now re-
stricting r = Ri in equation (3.7), we get a set of four
equations,

φ0i = φi −
∑

j

Ḡij(E,P)(V φj), (3.8)

where we have written

Ḡij(E,P) = Ḡ(E,P;Ri,Rj) (3.9)

and φi = g̃(Ri) and φ0i = g̃0(Ri). Equation (3.8) is a
matrix equation,

φ0 = (I − Ḡ(E,P)V )φ, (3.10)

where Ḡ is 4 × 4, φ and φ0 are 4 × 1, and V is a scalar
(strength of potential). And we can invert the matrix to
get,

φ =
(
I − Ḡ(E,P)V

)−1
φ0. (3.11)

This is a key result, as we have expressed the desired
function g̃, a Fourier transform of g(q) including all q, in
terms of g̃0 which includes only q ∈ Q0; the information
about other q ∈ Q̄ was packaged into the Green function
Ḡ(E,P).

Now we go back to equation (3.3), restrict the sum-
mation to Ri, and substitute in V g̃i from equation (3.11),
and we get,

(E − E(q) − E(P − q))g(q) =
∑

q′∈Q0

T (E,P;q,q′)g(q′).

(3.12)
where in the last step we have used the Fourier transform
of g̃0(Rj) equation (3.6) and defined,

T (E,P;q,q′)=
1
N

∑
ij

eiqRie−iq′Rj
(
V (I − Ḡ(E)V )−1

)
ij
.

(3.13)
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If we restrict q ∈ Q0 in equation (3.12), then we have,

(E − E0)g(q) =
∑

q′∈Q0

T (E,P;q,q′)g(q′), (3.14)

which means,

E = E0 + Eigenvalue(T (E)), (3.15)

where we have written

Tq,q′(E) = T (E,P;q,q′) (3.16)

and left out the dependence on P. Tq,q′ is the t-matrix in
momentum space. Both q and q′ in equation (3.14) are in
Q0, which means that if there are N0 elements in Q0 then
the matrix T (E) is N0 ×N0.

Equation (3.15) is our desired equation that shows ex-
plicitly the interaction correction to the noninteracting
energy E0. In Appendix A, we show the physical meaning
of T (E,P;q,q′) in the language of diagrammatic pertur-
bation theory, namely it is the sum total of all the terms
with repeated scattering of the same two particles. This
t-matrix formalism for the two-particle problem is there-
fore exact, and it is exactly equivalent to the Schrodinger
equation and the Green function formalism in Section 2.
The resulting equation is an implicit equation on E, of
the form E = E0 +∆E(E) of equation (1.2), and we will
show in a later section that for fermions the approximation
E ≈ E0 +∆E(E0) is often very good.

Note also that for our case V = +∞, the t-matrix
expression equation (3.13) becomes

T (E,P;q,q′) =
1
N

∑
ij

eiqRie−iq′Rj
(
−Ḡ(E)−1

)
ij
,

(3.17)
where the potential V cancels out, giving a finite value.
This is one of the advantages of the t-matrix formalism
that it can deal with infinite (singular) potential, for which
straightforward perturbation theory would diverge.

The definition of T (E,P;q,q′) in equation (3.13)
is a Fourier transform of the real space quantity
V (I − Ḡ(E)V )−1. Here Ḡ is 4 × 4 because we have
nearest-neighbor interaction. When there is only on-site
interaction, as is in the usual Hubbard model case, Ḡ(E) =
Ḡ(E,P, (0, 0), (0, 0)), equation (3.5), is a scalar. Then, we
can simply use the scalar quantity V/(I − ḠV ), which
is the t-matrix that has appeared in Kanamori [42],
Mattis [25], Rudin and Mattis [44], and Yosida [43]. Our
expression, equation (3.13), is more complicated because
we have nearest-neighbor interaction (and thus the rele-
vance of Rj).

3.3 Symmetry considerations

In Section 2.2.1, after deriving the general Green func-
tion equation using G(E), we specialized to rectangular-
boundary lattices and used lattice reflection symmetries
to diagonalize the 4 × 4 matrix G(E) and obtained scalar

equations. Here our t-matrix equation (3.15) requires us to
find the eigenvalues of the t-matrix T . In this section, we
use particle permutation symmetry and pair component
exchange symmetry to diagonalize the N0 × N0 t-matrix
T (E) for a few special cases.

3.3.1 N0 = 1

There is only one momentum vector in Q0. Let us write
Q0 = {q1} (this implies that P − q1 = q1). Then there
is only one unperturbed two-particle basis state |q1,q1〉
(see Eq. (3.2)). This must be a boson state, and T (E) is
a number. We write the resulting scalar equation as,

E = E0 + T1(E). (3.18)

3.3.2 N0 = 2

Here Q0 = {q1,q2} with q1 + q2 = P. The basis states
are |q1,q2〉 and |q2,q1〉. The symmetric (boson) combi-
nation is (|q1,q2〉 + |q2,q1〉)/

√
2, and the antisymmetric

(fermion) combination is (|q1,q2〉 − |q2,q1〉)/
√

2. These
have to be the eigenvectors of T (E). And that is to say
that if we define

S2 =
1√
2

(
1 1

1 -1

)
, (3.19)

then we have S2 = St
2, S2

2 = I, and

S2 T (E)S2 =

(
T1,1(E) 0

0 T1,−1(E)

)
. (3.20)

Here T1,1(E) and T1,−1(E) are scalars that correspond to
boson and fermion symmetries respectively. And our t-
matrix equation (3.15) is reduced to two scalar equations,

E = E0 + T1,1(E), E = E0 + T1,−1(E), (3.21)

for bosons and fermions respectively. Our notation for the
eigenvalues of T (E) is always to write T with subscripts
that are the coefficients (in order) of the N0 two-particle
basis vectors.

3.3.3 N0 = 4

Here Q0 = {q1,q2,q3,q4} with q1 + q2 = q3 + q4 =
P. The basis states are |q1,q2〉, |q2,q1〉, |q3,q4〉, and
|q4,q3〉. Using particle permutation symmetry, we get two
states with even symmetries appropriate for bosons, which
generically would be

a(|q1,q2〉 + |q2,q1〉) + b(|q3,q4〉 + |q4,q3〉),

− b(|q1,q2〉 + |q2,q1〉) + a(|q3,q4〉 + |q4,q3〉), (3.22)
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and two odd (fermion-type) states,

a(|q1,q2〉 − |q2,q1〉) + b(|q3,q4〉 − |q4,q3〉),

− b(|q1,q2〉 − |q2,q1〉) + a(|q3,q4〉 − |q4,q3〉) (3.23)

where a and b are arbitrary coefficients to be determined.
Recall N0 = 4 means the pair (q1,q2) has the same to-

tal momentum and energy as (q3,q4), which may happen
for various reasons. When the reason is the pair compo-
nent exchange symmetry (of Sect. 3.1), i.e. q3 = (q1x, q2y)
and q4 = (q2x, q1y), then a = b = 1/2, due to a hidden
symmetry under the permutation 1 ↔ 3, 2 ↔ 4. The only
effect this permutation has on the momentum transfers
qi−qj is to change the sign of one or both components; but
the potential V (r) is symmetric under reflection through
either coordinate axis, hence V (qi − qj) is invariant un-
der the permutation. Since the t-matrix depends only on
V (qi − qj), it inherits this symmetry. Next, if we define

S4 =
1
2




1 1 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1


 , (3.24)

then we have S4 = St
4, S2

4 = I, and S4 T (E)S4 be-
comes diagonal with four eigenvalues of T (E): T1,1,1,1(E),
T1,1,−1,−1(E), T1,−1,1,−1(E), and T1,−1,−1,1(E)). And our
t-matrix equation (3.15) is reduced to

E = E0 + T1,1,1,1(E), E = E0 + T1,1,−1,−1(E), (3.25)

for bosons and

E = E0+T1,−1,1,−1(E), E = E0+T1,−1,−1,1(E), (3.26)

for fermions.
The three cases N0 = 1, 2, and N0 = 4 with pair

component exchange symmetry are three special cases in
which we know the eigenvectors of T and can therefore
diagonalize T from symmetry considerations easily.

Different or larger values ofN0 are possible when P has
a special symmetry, e.g. when Px = Py, N0 = 8 generi-
cally since Q0 includes pairs such as (q1y, q1x), (q2y , q2x).
For these general cases, we return to equation (3.15) and
diagonalize T numerically. For example, on a L × L lat-
tice, the pairs (0,1)(0,−1) and (1,0)(−1, 0) have the same
total energy and momentum, but this is not due to the
pair component exchange symmetry. In this case, we nu-
merically diagonalize the 4 × 4 matrix T (E), and we find
that in the fermion eigenvectors, equation (3.23), a �= b.

3.4 Solving for energy

The example system that we will study here is 10×11 with
P = (0, 0). The noninteracting and interacting energies of
the system are in Table 1. It can be seen that all of the
energies listed in Table 1 are of the three cases discussed
in Section 3.3: N0 = 1, N0 = 2, and N0 = 4 due to pair
component exchange symmetry.

−8.0 −7.0 −6.0 −5.0
E

−9.0

−8.0

−7.0

−6.0

−5.0

f(
E

)
Fig. 3. f(E) = E0+T1(E) versus E for 10×11 lattice with P =
(0, 0) and E0 = −8.0 (i.e., E0 = E(0)+E(0).) The intersections
with the line y = E are the exact two-particle energies.

We solve for energy E in the implicit equation, E =
E0+T (E), where T (E) represents the eigenvalues of T (E),
e.g., T1,−1(E). We plot f(E) = E0 + T (E) along with a
line y = E. Their intersections are the desired energies E.

3.4.1 N0 = 1 case

In Figure 3, we plot f(E) versus E for the 10 × 11
lattice with P = (0, 0) and the noninteracting energy
E0 = −8.0 = E(0) + E(0). Here Q0 = {(0, 0)}, and the
nonperturbed state is |q1 = (0, 0),P − q1 = (0, 0)〉 which
can only be a boson state. The energy intersections from
Figure 3 are −7.906, −7.299, −6.971, −6.022, and so on.
Looking into Table 1, we see that these are all boson en-
ergies.

In Figure 3, note also that the energy −6.601, which
is an exact eigenenergy from exact diagonalization, does
not appear as an intersection in Figure 3. This is a spe-
cial energy, being also a noninteracting energy. Earlier, as
mentioned at the beginning of Section 3.2, we assumed
that our E �= E(q) + E(P − q) for any q ∈ Q̄, so this
energy is excluded from our t-matrix formulation. We will
address later in Section 3.4.3 this kind of exact solutions
that are also noninteracting energies.

Note that our equation E = E0 + T (E) is a reformu-
lation of the Schrodinger equation with certain symme-
try considerations, and it should be satisfied by all ener-
gies E with the same symmetry. Building T (E) from E0

and P does not automatically give us a unique interacting
energy E that corresponds to the noninteracting energy
E0. However, we can see clearly from Figure 3, if we per-
turb the exact solutions by a small amount E → E + δ,
then f(E) changes drastically except for the lowest energy
E = −7.906. That is to say that these other energies, for
example E = −6.971, are exact solutions of the equation
f(E) = E, but they are not stable solutions. From the
plot, only E = −7.906 comes close to being stable.



N.G. Zhang and C.L. Henley: Dilute spinless fermions and hardcore bosons on the square lattice 419

Table 1. The 12 low-lying noninteracting and exact two-particle energies of the 10×11 lattice with total momentum P = (0, 0).
q1 and q2 = P− q1 are the momentum vectors.

q1 q2 E(q1) + E(q2) boson fermion

(0, 0) (0, 0) −8.0000000000 −7.9068150537 −7.3117803781

(0, 1) (0,−1) −7.3650141313 −7.2998922545 −7.1770594424

(1, 0) (−1, 0) −7.2360679774 −6.9713379459 −6.4994071102

(1,−1) (−1, 1) −6.6010821088 −6.6010821088 −6.4700873024

(1, 1) (−1,−1) −6.6010821088 −6.0227385416 −5.5449437453

(0, 2) (0,−2) −5.6616600520 −5.4277094111 −5.1475674826

(2, 0) (−2, 0) −5.2360679774 −5.0769765528 −4.8309218202

We can be more precise about this notion of stability.
If we have an iteration xn+1 = f(xn), and x∗ is a fix point
(i.e., f(x∗) = x∗), then the iteration is linear stable at x∗
if and only if |f ′(x∗)| < 1. In our plots, we have included a
line y = E with slope one, which can be used as a stability
guide. An intersection (fix point) is linearly stable when
the function f(E) at the intersection is not as steep as the
straight line.

3.4.2 N0 = 2 case

In Figure 4 we plot for E0 = −7.365 and P = (0, 0) with
Q0 = {(0, 1), (0,−1)}. The boson function f(E) = E0 +
T1,1(E) is the dotted line in the top graph, and the fermion
function f(E) = E0 + T1,−1(E) is the solid line in the
bottom graph.

The intersections closest to E0 = −7.365 are −7.299,
the first excited boson energy (see Tab. 1), and −7.311,
the lowest fermion energy. Note that the curve on which
the fermion intersection (−7.311) lies is very flat. In other
words for this fermion energy E ≈ E0 + T (E0), i.e., the
first iteration using the noninteracting energy gives an en-
ergy very close to the exact value. More precisely, we find
with E0 = −7.365014, f(E0) = E0 + T (E0) = −7.310584,
which is very close to E = −7.31178. Many t-matrix calcu-
lations [25,42–44], use the first iteration E ≈ E0 + T (E0)
as an approximation to the exact energy, and we see in
this case this approximation is very good. (We will come
back to this point later in Sect. 3.5.)

3.4.3 N0 = 4 case

In Figures 5 and 6, we plot f(E) for E0 = E(1,−1) +
E(−1, 1) = E(1, 1) + E(−1,−1) = −6.601 and P = (0, 0).
For this N0 = 4 case we have two boson functions, plot-
ted in Figure 5, f(E) = E0 +T1,1,1,1(E) (dotted line) and
f(E) = E0 +T1,1,−1,−1(E) (dot-dashed line), and we have
two fermion functions, plotted in Figure 6, f(E) = E0 +
T1,−1,1,−1(E) (solid line) and f(E) = E0 + T1,−1,−1,1(E)
(dashed line). The fermion intersections closest to E0 are
−6.499 and −6.470. Here again the two fermion curves
are very flat. The two boson intersections closest to E0 are
−6.022 and −6.601. Note that the latter is also a noninter-
acting energy, and it is the intersection of the horizontal
line E = E0 with y = E.
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Fig. 4. f(E) versus E for 10 × 11 lattice with P = (0, 0)
and E0 = −7.365 (i.e., E0 = E(0, 1) + E(0,−1).) The top
graph (dotted line) is for boson f(E) = E0 + T1,1(E), and
the top graph (solid line) for fermion f(E) = E0 + T1,−1(E).
The fermion curve is essentially flat near E = E0.

One interesting observation of the fermion plot in Fig-
ure 6 is that pairs of closely spaced energies (for exam-
ple −7.311 and −7.177) lie on different symmetry curves.
We know that if we have a square lattice (for example
10× 10) then the noninteracting fermion energies come in
pairs. Here, we have chosen a 10 × 11 lattice that is close
to a square but does not have exact degeneracies. We see
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Fig. 5. Boson f(E) versus E for 10 × 11 lattice with P =
(0, 0) and E0 = −6.601. The dotted line is for T1,1,1,1 and the
horizontal dot-dashed line for T1,1,−1,−1 (which corresponds to
a noninteracting state, see text at the end of this section).
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Fig. 6. Fermion f(E) versus E for 10 × 11 lattice with P =
(0, 0) and E0 = −6.601. The solid line is for T1,−1,1,−1 and
the long-dashed line for T1,−1,−1,1. Note that closely spaced
fermion energy pairs are separated by symmetry.

that the resulting closely spaced pairs are separated by
symmetry considerations.

Another interesting observation from Figure 5 for
bosons is that we have a horizontal line that corresponds
to T1,1,−1,−1(E) = 0. For this case the noninteracting en-
ergy is an exact energy. That is to say, (1, 1,−1,−1) is a
null vector of T (E) (see Sect. 3.3.3), or the eigenstate,

|q1,q2〉 + |q2,q1〉 − |q3,q4〉 − |q4,q3〉, (3.27)

with q3 = (q1x, q2y) and q4 = (q2x, q1y) is an exact eigen-
state of the Hamiltonian. This can be shown easily using
the Schrodinger equation (2.15). We have g(q1) = g(q2) =
1, g(q3) = g(q4) = −1, and g(q) = 0 for all other q, and

we can easily show V (q− q1) + V (q− q2)− V (q− q3)−
V (q − q4) = 0 (because V (k) can be separated into a
sum of two terms that involve the x and y components
separately).

Transforming to the real space, without worrying
about normalization, we can have

g̃(r) =
∑
q

e−iq·rg(q)

∼
(
e−iq1xx − e−iq2xx

) (
e−iq1yy − e−iq2yy

)
, (3.28)

where we have used the fact mentioned above that g(q) is
not zero for only four q’s which are related by pair compo-
nent exchange symmetry. It is clear from equation (3.28)
that g̃(0, y) = 0 = g̃(x, 0), which means that the wave
function in relative position space is “d-wave” like, having
nodes along x and y axes (thus happens to have nodes
at every relative position where the potential would be
nonzero).

3.5 Fermion: noninteracting to interacting

In this section we use the t-matrix techniques developed in
the preceding sections to study the relationship between
the noninteracting energies and the interacting energies.
We start with the table of energies in Table 1 for the 10×11
lattice with P = (0, 0). We have asked in the introduction
to this section whether we can go from the noninteracting
to the interacting energies and now we know that we have
an equation E = E0 + T (E) where T (E) is the symmetry
reduced scalar t-matrix function. From our graphs (Figs. 4
and 6) we have commented that for fermions the curve of
T (E) around E0 is quite flat (which is not the case for
bosons). And we mentioned that this implies that the ap-
proximation E ≈ E0 + T (E0) is close to the exact energy.
Now in this section, we study the t-matrix approach for
a specific system. We will denote E1 = E0 + T (E0), the
first iteraction result, and En+1 = E0 + T (En), the nth
iteration result.

In Table 2 we show the t-matrix calculation for the
10×11 lattice. We show for the lowest few states the non-
interacting energy E0, the first t-matrix iteration E1, the
fifth t-matrix iteration E5, and the exact energy Eexact. In
Figure 7 these energy levels are plotted graphically. From
the table, it is clear that the first t-matrix iteration result
E1 is quite close to the exact energy, and the fifth iteration
result E5 gives a value that is practically indistinguishable
from the exact value.

In principle, the t-matrix energy for a pair of particles
might be shifted out of the continuum of two independent
particle energies, creating a bound state. The potential has
s-like symmetry so this is possible only for an s-like rel-
ative wavefunction, i.e. for bosons since spinless fermions
must have a spatially antisymmetric wavefunction. Our
constraint affects low-energy states like a repulsive poten-
tial, invariably shifting their energies upwards compared
to the noninteracting case (as evident in the exact en-
ergies, e.g. Tabs. 1 and 2). Thus bound state formation
never occurs for the low-energy states which we studied.
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Table 2. Fermion energies for 10×11 lattice with P = (0, 0). E0 = E(q1)+E(q2) is the noninteracting energy. En = E0+T (En−1)
where T (E) is the symmetry reduced t-matrix. Here only fermion energies (from T1,−1 or T1,−1,1,−1 and T1,−1,−1,1) are included.

q1 q2 E0 E1 E5 Eexact

(0,1) (0,−1) −7.365014 −7.310598893 −7.311780378 −7.311780378

(1,0) (−1,0) −7.236067 −7.175212790 −7.177059440 −7.177059442

(1,−1) (−1,1) −6.601082 −6.493807907 −6.499407060 −6.499407110

(1,1) (−1,−1) −6.601082 −6.460962404 −6.470087137 −6.470087302

(0,2) (0,−2) −5.661660 −5.532751985 −5.544942250 −5.544943745

(2,0) (−2,0) −5.236067 −5.134290466 −5.147558003 −5.147567483
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Fig. 7. Two-fermion energy levels for the 10 × 11 lattice with
P = (0, 0). From left to right, the lowest few noninteracting
energies E0, first t-matrix iteration E1, fifth t-matrix iteration
E5, and the exact energy Eexact are plotted. Note that the third
noninteracting energy from the bottom is doubly degenerate
(see Tab. 2).

Furthermore, nearest-neighbor hopping on a bipartite lat-
tice admits an exact symmetry relating states of energy
−E → +E, so (in the limit of infinite V ) the pair states
near the band maximum have their energies reduced by
the hard-core exclusion and are not bound either.

4 A few fermions: shell effect and t-matrix

In Section 2, we used lattice Green function to study the
problem of two particles (bosons and fermions), and at
the end of that section, in Section 2.4, we obtained the
ground state energy of a few particles on a large lattice
by summing up the energy of each pair of particles. This
section contains a much more detailed study of the few-
fermion problem: we will consider first the fermion shell
effect and then we will study the interaction correction to
energy (ground state and excited states) for a few fermions
(three, four, and five) using the t-matrix.

Our results – summarized in Section 4.6 – confirm that,
in the dilute limit, almost all of the interaction correction

is accounted for by the two-body terms of the t-matrix ap-
proximation, equation (4.1). But (recall Eq. (1.3)) that
is a hallmark of a Fermi liquid picture; i.e., our numer-
ical results suggest its validity at low densities. This is
a nontrivial result, in that firstly, the validity of Fermi
liquid theory in a finite-system context has rarely been
considered. Standard t-matrix theory depends on a Fermi
surface which (at T = 0) is completely sharp in momen-
tum space, and every pair’s t-matrix excludes scattering
into the same set of occupied states. In a finite system,
however, the allowed q vectors fall on a discrete grid, and
since the total number of particles is finite, the t-matrices
of different pairs see a somewhat different set of excluded
states (since they do not exclude themselves, and one par-
ticle is a non-negligible fraction of the total).

Secondly, and more essentially, the analytic justifica-
tions of Fermi liquid theory exist only in the cases of spin-
full fermions (in a continuum). That case is dominated
by s-wave scattering, so that the t-matrix approaches a
constant in the limit of small momenta (and hence in the
dilute limit). Our spinless case is rather different, as will
be elaborated in Section 5, because the t-matrix is dom-
inated by the p-wave channel, which vanishes at small
momenta. Thus the q dependence is crucial in our case,
and the numerical agreement is less trivial than it would
be for s-wave scattering.

In this section, after an exhibition of the shell effect
(Sect. 4.1), we present a general recipe for the multi-
fermion t-matrix calculation. This is developed by the sim-
plest cases, chosen to clarify when degeneracies do or do
not arise.

4.1 Fermion shell effect

At zero temperature, the ground state of noninteracting
fermions is formed by filling the one-particle states one
by one from the lowest to higher energies. For our model
of spinless fermions on a square lattice, we have the two
ingredients for the shell effect: fermionic exclusion and de-
generacies of one-particle states due to the form of our en-
ergy function and lattice symmetry. Shell effects have been
noted previously in interacting models [50]; our code, per-
mitting non-rectangular boundary conditions, allows us to
see even more cases of them.

In Figure 8 we show the exact and for comparison the
noninteracting ground state energies for the 5×8 lattice for
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Fig. 8. Shell effect for 5 × 8 lattice (fermion, top graph; bo-
son, bottom graph). Exact, interacting groundstate energies
are compared with noninteracting energies for up to seven par-
ticles. Energy increment E(M) − E(M − 1) is shown.

up to seven particles. The energy increment curve E(M)−
E(M − 1) is plotted and shows clearly the shell effect.

With fermions, the filled shells for the 5× 8 lattice are
atM = 3 (with momentum vectors (0, 0)(0,±1) occupied)
and M = 5 (with (0, 0)(0,±1)(±1, 0) occupied). For com-
parison, because bosons can all be at the zero-momentum
state, where energy is −4, the total noninteracting energy
is −4M , so the exact energy curve shows smooth changes
when M increases. There is no shell effect.

4.2 General multi-fermion theory

The key notion for generalizing our two-fermion approach
to M fermions is that the set Q0 now consists of every
M -tuple α of wavevectors that gives the same total mo-
mentum and noninteracting energy. This defines a reduced
Hilbert space, with the corresponding basis states |φα〉.
We can construct an approximate, effective Hamiltonian
H0 +Htm acting within Q0-space, where Htm is a sum of
pairwise t-matrix terms, each of which changes just two

fermion occupancies:

Htm =
∑′

αβ
Tαβ . (4.1)

The notation
∑′

αβ means the sum only includes the pair
(α, β) when |φα〉 differs from |φβ〉 by a change of two
fermions.

Thus, each term in equation (4.1) is associated with
a particular fermion pair (qi,qj). Each such pairwise t-
matrix can be viewed as a sum of all possible repeated
scatterings of those two fermions through intermediate
states, except that intermediate states which are already
included in Q0 are excluded. (The most important omis-
sion of this approximation would be the processes in which
three or more fermions are permutated before the sys-
tem returns to the Q0 Hilbert space.) Each term is a
two-fermion t-matrix calculated according to the recipe
of Sections 3.2 and 3.4 – thus each term has its own two-
fermion wavevector set Q0

ij and complementary set Q̄ij ,
as defined in equation (3.1). The only change in the recipe
is to augment the set Q̄ij of wavevectors forbidden in the
intermediate scatterings of the two fermions, since they
cannot scatter into states already occupied by the other
fermions in states α and β. (See Eq. (4.2) for an example.)

The t-matrix treatment is a form of perturbation ex-
pansion, for which the small parameter is obviously not
V (which is large) but instead 1/L2, as is evident from
equation (2.44). That is, as the lattice size is increased
(with a fixed set of fermions), the approximation captures
a larger and larger fraction of the difference Eexact − E0.

4.3 A three-fermion t-matrix calculation

We first compute the energy of three fermions (M = 3)
for the 8 × 9 lattice with P = 0. For this example calcu-
lation, we have chosen Lx �= Ly to reduce the number of
degeneracies in the noninteracting spectrum. In Figure 9
we show the lowest five noninteracting levels and the cor-
responding states in momentum space.

Let us consider the lowest noninteracting state in the
8 × 9, P = (0, 0), and M = 3 system, with three momen-
tum vectors: q1 = (0, 1), q2 = (0, 0), and q3 = (0,−1)
(see Fig. 9). And let us first consider the interaction of
the pair q1 and q2. The noninteracting energy of the pair
is E12

0 = E(q1) + E(q2) = −7.682507 and the total mo-
mentum is P12 = q1 + q2 = (0, 1). As usual, we use E12

0

and P12 to form the set Q0
12 (Eq. (3.1)). Here there are

no other degenerate vectors so Q0
12 = {(0, 0), (0, 1)}. The

three-particle problem is different from the two-particle
case in the choice of Q̄12, the set of momentum vectors
that the two particles can scatter into. Due to the presence
of the third particle and Pauli exclusion, the two particles
at q1 = (0, 1) and q2 = (0, 0) cannot be scattered into
the momentum vector q3 = (0,−1), so we must exclude
q3 from Q̄12. Furthermore, even though there is no parti-
cle at P12 −q3 = (0, 1)− (0,−1) = (0, 2), this momentum
cannot be scattered into, because otherwise the other par-
ticle would be scattered into the occupied q3. That is to
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Fig. 9. Lowest five noninteracting energy levels for the 8 × 9
lattice with M = 3 fermions and total momentum P = (0, 0).
States in momentum space are drawn.

say, the momentum vectors that can be scattered into are

Q̄12 = {q|q �= q1,q2,q3,P12 − q3} (4.2)

This exclusion is shown graphically in Figure 10.
The t-matrix formalism can then be applied usingQ0

12

and Q̄12 to compute energy correction T̃ 12(E) for the
interaction of the q1 and q2 pair. Here T̃ 12(E) is the
“fermion” function T1,−1(E) (Eq. (3.21)), corresponding
to the antisymmetric eigenvector of the t-matrix T̃ (E);
the tilde denotes the modification due to exclusion of the
set Q̄12. When the t-matrix contributes a small correction,
it is accurate to use the bare values, Eij

0 ≡ E(qi) + E(qj),
and this approximation was used for all tables and figures
in this section.

The total energy within this approximation is a sum
of the t-matrix corrections for all possible pairs in the
system, which are (q2,q3), and (q1,q3) in the present
case:

Etm = E(q1) + E(q2) + E(q3) + T̃ 12(E12) + T̃ 13(E13)

+ T̃ 23(E23). (4.3)

This is a special case of the effective Hamiltonian equa-
tion (4.1), which reduces to a 1×1 matrix in the nondegen-
erate case. (That is, whenever the set Q0 of multi-fermion
occupations has just one member.) The momentum space
exclusions due to the presence of other particles are de-
picted in Figure 10, and the numerical values of this cal-
culation are given in Table 3.

A more accurate approximation is to enforce a self-
consistency,

Eij ≡ Eij
0 + T̃ ij(Eij) (4.4)

where as defined above Eij
0 ≡ E(qi) + E(qj). It should

be cautioned that the physical justification is imperfect:

Fig. 10. Momentum space exclusions in t-matrix M = 3 cal-
culation for the state (0,0)(0,1)(0,−1). The crosses indicate ex-
clusions when calculating pair energy for (0,0)(0,1) (left figure),
(0,0)(0,−1) (middle), and (0,1)(0,−1) (right) respectively.

Table 3. T-matrix calculation for the 8 × 9 lattice with
M = 3 noninteracting particles q1 = (0, 0), q2 = (0, 1),
and q3 = (0,−1). The total noninteracting energy is E0 =
E(q1) + E(q2) + E(q3) and the total t-matrix correction is
T̃ = T̃ 12 + T̃ 13 + T̃ 23. The energy calculated using the t-matrix
is then Etm = E0 + T̃ and the exact energy from diagonal-
ization is Eexact. Eij

0 = E(qi) + E(qj), is the noninteracting
energy of the (i, j) pair.

Q0
ij Pij Eij

0 T̃ ij

(0,0)(0,1) (0,1) −7.532088886 0.041949215

(0,0)(0,−1) (0,−1) −7.532088886 0.041949215

(0,1)(0,−1) (0,0) −7.064177772 0.118684581

Column sum T̃ = 0.202583012

Noninteracting total E0 = −11.064177772

T-matrix total Etm = −10.861594761

Exact total Eexact = −10.871031687

if we visualize this approximation via a path integral or a
Feynman diagram, the self-consistent formula would mean
that other pairs may be scattering simultaneously with
pair (ij), yet we did not take into account that the other
pairs’ fluctuations would modify the set of sites Q̄ij ac-
cessible to this pair. In any case, analogous to the two-
particle t-matrix (Sect. 3), we could solve equation (4.4)
iteratively setting Eij

n+1 = Eij
0 + T̃ ij(Eij

n ), until succes-
sive iterates agree within a tolerance that we chose to be
10−15, which happened after some tens iterations.

Using the same procedure, we can also calculate the
t-matrix energies for the nondegenerate excited states of
the M = 3 system in Figure 9: the (−1, 0)(0, 0)(1, 0) and
(0, 2)(0, 0)(0,−2) states. The results are shown in Table 4.
Figure 11 shows graphically the noninteracting energy
levels, the t-matrix energies for the three nondegenerate
states, and the exact energies from diagonalization, and
the arrows link the noninteracting energies E0 with the
t-matrix results Etm = E0 + T̃ . The agreement between
Etm and Eexact is good.

4.4 A five-fermion t-matrix calculation

We now consider briefly a M = 5 calculation, again for the
8 × 9 lattice. The noninteracting ground state is unique,
with momentum vectors q1 = (0, 0), q2 = (0, 1), q3 =
(0,−1), q4 = (1, 0), and q5 = (−1, 0). In Figure 12 we
show the excluded set Q̄24 of the t-matrix computation
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Table 4. Lowest 15 noninteracting, exact, and t-matrix ener-
gies for 8 × 9 lattice with M = 3 and P = (0, 0).

E0 Eexact Etm

−11.064178 −10.871031687 −10.861594761

−10.828427 −10.608797838 −10.595561613

−9.892605 −9.672121352

−9.892605 −9.519017636

−9.892605 −9.497189108

−9.892605 −9.462304364

−9.892605 −9.398345108

−9.892605 −9.345976806

−8.694593 −8.252919763 −8.210179503

−8.239901 −8.015024904

−8.239901 −7.946278078

−8.239901 −7.809576487

−8.239901 −7.800570818

−8.239901 −7.690625772

−8.239901 −7.615399722

−12.0

−11.0

−10.0

−9.0
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Fig. 11. Noninteracting, t-matrix, and exact energies of the
three-particle fermion system on the 8 × 9 lattice with P =
(0, 0). The bracketed numbers refer to the degeneracies of the
level (see Fig. 9). The arrows associate the noninteracting
states with the t-matrix results. We have worked on nonde-
generate noninteracting states so far.

for the pair (q2,q4). The momentum vectors (q1,q3,q5)
filled with other fermions are excluded, of course; three
more wavevectors are excluded since the other member of
the pair would have to occupy one of q1, q3, or q5, due
to conservation of the total momentum P = (1, 1). The
t-matrix results for all 10 pairs are presented in Table 5.

One might think that the pair, q2 = (0, 1) and q4 =
(1, 0), exhibits pair-exchange symmetry with (0,0)(1,1), so
that N0 = 4 as in Sections 3.3.3 and 3.4.3. However, since

Fig. 12. Momentum space exclusions in t-matrix M = 5 cal-
culation for momentum vectors q2 = (0, 1) and q4 = (1, 0)
(dots without crosses). These two fermions are excluded from
scattering into momenta from the set Q̄2,4 (marked by crosses).
The ground state is shown, with occupied momenta (0,0), (0,1),
(0,−1), (1,0), and (−1, 0) (solid dots).

Table 5. T-matrix calculation for the 8 × 9 lattice with five
particles (0,0), (0,1), (0,−1), (1,0), and (−1, 0). The exclusions
in Q̄ for the pair (0,1)(1,0) are depicted in Figure 12.

Q0
ij Eij

0 T̃ ij

(0, 0) (0, 1) −7.532088886 0.045184994

(0, 0) (0,−1) −7.532088886 0.045184994

(0, 0) (1, 0) −7.414213562 0.056898969

(0, 0) (−1, 0) −7.414213562 0.056898969

(0, 1) (0,−1) −7.064177772 0.118684581

(0, 1) (1, 0) −6.946302449 0.081095408

(0, 1) (−1, 0) −6.946302449 0.081095408

(0,−1) (1, 0) −6.946302449 0.081095408

(0,−1) (−1, 0) −6.946302449 0.081095408

(1, 0) (−1, 0) −6.828427125 0.131405343

E0 = −17.892604897 T̃ = 0.778639481

Eexact = −17.145715214 Etm = −17.113965417

(0,0) is occupied, the (0,1)(1,0) pair cannot scatter into
the (0,0)(1,1) pair: hence (0,1)(1,0) is a generic pair with
N24

0 = 2. In general, if a pair is ever free to scatter into
a degenerate pair state with a different occupation, that
must be part of a many-particle state degenerate with the
original one. Thus, the complicated t-matrix pairs with
N ij

0 > 2 can arise in a many-fermion calculation only
when the noninteracting many-fermion states are them-
selves degenerate.

4.5 Degenerate states

In the ground state examples considered up to now
(Sects. 4.3 and 4.4), the noninteracting states were all
nondegenerate. Let us now study a degenerate state in
the third lowest level (six-fold degenerate) of M = 3
fermions on the 8 × 9 lattice: q2 = (0, 1), q3 = (1, 0),
q4 = (−1,−1). (See Fig. 9, row 3.) In this state, the
pair [q2 = (0, 1),q3 = (1, 0)] has the same total energy
and momentum as the pair [q1 = (0, 0),q5 = (1, 1)],
on account of the pair component exchange symmetry
(see Sect. 3.1); consequently [q2,q3] can be scattered into
[q1,q5] contrary to the previous example in Section 4.4.
Indeed, each of the six basis states in row 3 of Figure 9



N.G. Zhang and C.L. Henley: Dilute spinless fermions and hardcore bosons on the square lattice 425

is connected to the next one by a two-body component
exchange symmetry.

Following the two-fermion calculation with N0 = 4
pairs (see Sect. 3.3.3), the degenerate pairs [q2,q3] and
[q1,q5] must be handled in the same set Q0

23. The results
equations (3.23) and (3.26) imply

T23(E23)|q2q3〉 =
1
2
(T1,−1,1,−1 + T1,−1,−1,1)|q2q3〉

+
1
2
(T1,−1,1,−1 − T1,−1,−1,1)|q1q5〉. (4.5)

Here T1,−1,1,−1 and T1,−1,−1,1 depend implicitly on P =
(0, 0), on the momenta, and on the energy E23, as well
as on Q̄23 which depends on the occupation (q4) of the
third fermion. In this notation, each Tij acting on any
state produces two terms as in equation (4.5). The total
t-matrix correction Hamiltonian is

∑
ij Tij , summed over

all 18 possible pairs appearing in the degenerate nonin-
teracting states. When we apply this to each state in the
third row of Figure 9, we finally obtain a 6×6 matrix mix-
ing these states. Diagonalization of this matrix would give
the correct t-matrix corrections (and eigenstates) for this
“multiplet” of six states. We have not carried out such a
calculation.

It is amusing to briefly consider the states in row 5
of Figure 9, a different sixfold degenerate set. Unlike the
row 3 case, these states separate into two subsets of three
states, of which one subset has qy = {−2,+1,+1} and the
other subset has the opposite {qy} components. Scatter-
ings cannot mix these subsets, so the 6× 6 matrix breaks
up into two identical 3×3 blocks. Hence the t-matrix ener-
gies from row 5 consist of three twofold degenerate levels.
By comparison, the exact interacting energies derived from
these noninteracting states come in three nearly degener-
ate pairs, such that the intra-pair splitting is much smaller
than the (already small) splitting due to the t-matrix.

4.6 Errors of the t-matrix

How good are the t-matrix results? From our example
calculations on the 8 × 9 lattice, in Tables 3, 4, and 5, we
see that Etm and Eexact are close.

In Figure 13 we plot the noninteracting, t-matrix, and
exact energies for M = 3, P = (0, 0) ground state on a se-
ries of near square lattices L×(L+1). The noninteracting
ground state momentum vectors are (0, 0)(0, 1)(0,−1) for
this series of lattices. We do not plot for L > 12, because,
as can be seen in the bottom graph, the t-matrix energy
Etm approaches the exact energy Eexact rapidly. The er-
ror of the t-matrix result, Etm − Eexact, decays very fast
as the size of the lattice increases – very roughly as the
L−6 power. Even at L = 6, i.e. at a density n ≈ 0.05, the
t-matrix approximation captures 95% of the interaction
energy Eexact − E0. These figures are based on using the
bare energies in T̃ ij(Eij

0 ) in equation (4.3). If we carried
out the self-consistent calculation described in Section 4.3,
the error Etm − Eexact would be smaller by a factor of
roughly 2.5.
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Fig. 13. Noninteracting, t-matrix, and exact energies for M =
3, P = (0, 0) ground state (0,0)(0,1)(0,−1) on a series of L ×
(L + 1) lattices as a function of L.

5 The dilute limit: energy curves

In this section, we are interested in the functional form of
the energy as a function of particle density for both bosons
and fermions in the dilute limit. In the three-dimensional
case, the problem of dilute quantum gases with strong,
repulsive, short-range interactions was first addressed in
the language of diagrammatic field theory by Galitskii [51]
for fermions and Beliaev [52] for bosons. At that time, the
ground state energy as an expansion in the particle den-
sity was also obtained for hard-sphere fermion and boson
gases by Yang and collaborators [53] using a pseudopo-
tential method. The field theoretical methods were later
adapted to two dimensions in particular by Schick [10]
for hard-disk bosons and by Bloom [41] for hard-disk
fermions. Some other relevant analytic papers using a t-
matrix approach for the Hubbard model were discussed in
Section 1.2: Kanamori [42] and Mattis [25] in d = 3 and
Rudin and Mattis [44] for d = 2.

For both hard-disk fermions and bosons in two dimen-
sions, the leading-order correction to the noninteracting
energy is found to be in the form of n/ lnn, where n
is particle density. Expansions with second-order coeffi-
cients different from the results of Schick and Bloom were
found in references [54,55] for the boson case and in refer-
ences [46,58] for the fermion case. There is no consensus at
this time on the correct second-order coefficient for both
the boson and fermion problems.

Recently, reference [56] has proved rigorously the
leading-order expansion of the two-dimensional dilute bo-
son gas found by Schick [10]. Numerically, the dilute boson
problem on a two-dimensional lattice has been studied us-
ing quantum Monte Carlo in references [11,12], and they
obtain good fit with Schick’s result. As we mentioned in
Section 1.2, more recently, because of a question regard-
ing the validity of the Fermi liquid theory in two dimen-
sions Bloom’s calculation [41] has received renewed at-
tention [46,48], but this result has not been checked by
numerical studies.
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5.1 Dilute bosons

For two-dimensional hard disk bosons, the energy per par-
ticle E/M at the low-density limit from diagrammatic
calculations is obtained (in the spirit of Ref. [52]) by
Schick [10]

E

M
=

2π�
2

m

n

| ln(na2)|

(
1 + O

(
1

ln(na2)

))
, (5.1)

where n = M/N is particle density, m the mass of the
boson, and a the two-dimensional scattering length. As
mentioned above, the coefficient of the second-order term,
has not been settled (a recent result is Ref. [57]).

This hard-disk calculation was carried out using the
kinetic energy �

2k2/2m. In our lattice model, our hopping
energy dispersion is (Eq. (2.11))

E(k) = −2t(cos(kx) + cos(ky)) ≈ −4t+ tk2, (5.2)

where we have Taylor-expanded the dispersion function
near k = 0 because in the dilute limit, at the ground
state, the particles occupy momentum vectors close to
zero. Therefore if we use t = � = 1 and the effective mass
m∗ such that we have the form �

2k2/2m∗, then m∗ = 1/2
for our system. So for our model, Schick’s expansion equa-
tion (5.1) should become,

E

M
= −4 +

4πn
| ln(na∗2)|

(
1 + O

(
1

ln(na∗2)

))
, (5.3)

where we have used a∗ to denote the scattering length
in our lattice system. There is no straightforward corre-
spondence between Schick’s scattering length a in the con-
tinuum and our a∗ on the lattice. With infinite nearest-
neighbor repulsion, the closest distance that our particles
can come to is

√
2. We expect roughly 1 < a∗ <

√
2, and

will determine a more precise value from curve fitting.
In Figure 14 we show the boson energy per particle

(E/M) versus particle per site (M/N) curve for ten lat-
tices, ranging from 25 sites to 42 sites, with three or more
particles (M ≥ 3). The data from all these lattices collapse
onto one curve, especially in the low-density limit.

Equation (5.3), Schick’s result applied to our model,
suggests the following leading order fitting form for E/M
versus n at the low-density limit,

E/M + 4
4πn

= A+
B

| ln(na∗2)| . (5.4)

That is to say, if we plot (E/M + 4)/(4πn) versus
1/| ln(na∗2)|, then, if Schick is correct, we should get a
straight line, with intercept A = 0 and slope B = 1, with
one adjustable parameter a∗.

In Figure 15, we plot (E/M + 4)/(4πn) versus
1/| ln(na∗2)| for the low-density limit (n ≤ 0.15) for three
choices of a∗ = 1.0, 1.36,

√
2. The data points appear to

lie on straight lines. For a∗ = 1.36 the fitted intercept
is A = −0.016 and the slope B = 0.959. In Table 6 we
show the fitted slope and intercept for a number of a∗
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Fig. 14. Boson energy per particle E/M versus particle den-
sity M/N data for ten lattices and M ≥ 3. Data from different
lattices collapse onto one curve. The solid line corresponds to
the fitting function −4+4πn(A+B/| ln(na∗2)|) with a∗ = 1.36,
A = −0.016, and B = 0.959, which is equation (5.4) with pa-
rameters from Table 6.
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Fig. 15. (E/M + 4)/(4πn) versus 1/| ln(na∗2)| plot to check
Schick’s formula for two-dimensional dilute bosons (Eq. (5.3)).
The data points are for M ≥ 3 and n ≤ 0.15 from those in
Figure 14, for lattices from 5×5 to 6×7. For the three a∗ values,
the a∗ = 1.36 choice gives A = −0.016 ≈ 0 and B = 0.959 ≈ 1.

choices. The slope is zero close to a∗ = 1.34 and the in-
tercept is zero close to a∗ = 1.39. Our data thus suggest
a∗ = 1.36 ± 0.03.

In Figure 14, the solid line is the function −4+4πn(A+
B/| ln(na∗2)|) using a∗ = 1.36, A = −0.016, and B =
0.959, and we obtain a good fit up to n = 0.15.

For bosons, quantum Monte Carlo can be used to ob-
tain zero temperature energies for reasonably large sys-
tems. For a dilute boson gas on a square lattice with
on-site hardcore but not nearest-neighbor interaction,
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Table 6. Intercept A and slope B in linear fitting (E/M + 4)/(4πn) versus 1/| ln(na∗)| for bosons, using equation (5.4). The
slope is one close to a∗ = 1.33 and the intercept is zero close to a∗ = 1.39. So we get a∗ = 1.36 ± 0.03. The fitting for three
choices of a∗ is plotted in Figure 15.

a∗ B A a∗ B A a∗ B A
1.00 1.855 −0.251 1.32 1.033 −0.039 1.37 0.941 −0.0099
1.10 1.547 −0.178 1.33 1.014 −0.033 1.38 0.923 −0.0043
1.20 1.289 −0.112 1.34 0.995 −0.027 1.39 0.906 0.0013
1.30 1.072 −0.050 1.35 0.977 −0.021 1.40 0.889 0.0069
1.31 1.053 −0.044 1.36 0.959 −0.016 1.414 0.865 0.015

reference [11] has fitted the first term of Schick’s formula
equation (5.1), and reference [12] has used higher-order
terms and included the fitting of the chemical potential
also. The agreement is good in both studies.

5.2 Dilute fermions

For fermions, it customary to write the energy per par-
ticle expansion in terms of the Fermi wavevector kF . For
two-dimensional dilute hard disk fermions with a general
spin s, the energy per particle from diagrammatic calcu-
lations, is obtained by Bloom [41]

E

M
=

�
2k2

F

4m

(
1 + 2s

1
| ln(kFa)|

+ O
(

1
ln(kFa)

)2
)
, (5.5)

(see Ref. [41] for the spin-1/2 calculation and Ref. [58] for
general s).

Equation (5.5) means that for our spinless fermions
(s = 0), the leading order correction to the noninter-
acting energy in equation (5.5) is zero, which is due to
the fact that equation (5.5) is derived for s-wave scatter-
ing. In our model, without spin, only antisymmetric spa-
tial wavefunctions are allowed for fermions, and therefore
the leading-order correction to the noninteracting energy
should be from p-wave scattering. Reference [40] contains
a formula for p-wave scattering in three dimensions where
the leading-order correction to E − E0 is proportional to
(kF a)3 while the s-wave correction is proportional to kFa.
We are not aware of a two-dimensional p-wave calcula-
tion in the literature [59], and we have not worked out
this p-wave problem in two dimensions. We expect that
the p-wave contribution to energy should be considerably
smaller than that from the s-wave term. In Section 2.4,
we have considered the case of a few fermions on a large
L × L lattice, and in Figure 1 we have studied the inter-
action correction to the noninteracting energy ∆E. It was
shown there that ∆E for our spinless fermions is much
smaller than that for bosons.

Using k2
F = 4πn/(2s + 1), we can rewrite equa-

tion (5.5) as

E

M
=

π�
2n

(2s+ 1)m

(
1 + 4s

1
| ln(na2)| + O

(
1

ln(na2)

)2
)
.

(5.6)
In this form, it is revealed that the second term of equa-
tion (5.6) is identical to the first term of the boson

expression equation (5.1), apart from the replacement
n → 2sn/(2s + 1). In other words, the dominant inter-
action term for spinfull fermions is identical to the term
for bosons, provided we replace n by the density of all spin
species but one, i.e. of the spin species which can s-wave
scatter off a given test particle.

6 Conclusion

We have studied a two-dimensional model of strongly-
interacting fermions and bosons. This model is the sim-
plest model of correlated electrons. It is very difficult to
study two-dimensional quantum models with short-range
kinetic and potential terms and strong interaction. There
are very few reliable analytical methods, and many nu-
merical methods are not satisfactory. With our simplified
model of spinless fermions and infinite nearest-neighbor
repulsion, we can use exact diagonalization to study sys-
tems much larger (in lattice size) than that can be done
with the Hubbard model, and we have checked our nu-
merical results with analytical results obtained from using
lattice Green function, t-matrix, and field theory (Schick’s
result [10]).

It is somewhat puzzling that with the essential role the
t-matrix plays in almost every calculation in the dilute
limit with strong interactions, no systematic study of the
t-matrix for a lattice model has been made, as far as we
know. We believe that our work on the two-particle t-
matrix and the few-fermion t-matrix is the first such study.
Some approximations that are routinely made in t-matrix
calculations are graphically presented, especially the use
of first t-matrix iteration in calculating fermion energy.
And we demonstrate the qualitative difference between
the boson and fermion t-matrices. We believe that this
study is a solid step in understanding dilute fermions in
two dimensions, and is of close relevance to the 2D Fermi
liquid question.

The dilute boson and fermion energy per particle
curves were studied in Section 5. The boson curve was fit-
ted nicely with a previous diagrammatic calculation, and
our work on dilute bosons complements quantum Monte
Carlo results [12]. For the fermion problem in our model,
the leading order contribution to energy is from p-wave
scattering; therefore, the series of results based on s-wave
calculations by Bloom [41], Bruch [58], and Engelbrecht
et al. [46] are not directly applicable.

Our model of spinless fermions and hardcore bosons
with infinite nearest-neighbor repulsion involves a
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T3(E,P;q,q′) =
1

N2

∑
q′′,q′′′∈Q̄

V (q − q′′)V (q′′ − q′′′)V (q′′′ − q′)
(E − E(q′′) − E(P− q′′))(E − E(q′′′) − E(P− q′′′))

(A.8)

Fig. 16. The three figures represent perturbative terms involv-
ing V (q−q′), T2(E,P;q,q′) and T3(E,P;q,q′). The t-matrix,
T (E,P;q,q′), is the sum of all these terms, i.e., it is the sum
of the ladder diagrams to infinite order.

significant reduction of the size of the Hilbert space as
compared to the Hubbard model. This enables us to obtain
exact diagonalization results for much larger lattices than
that can be done with the Hubbard model, and this also
enables us to check the various analytical results (Green
function, t-matrix, diagrammatics) in the dilute limit with
diagonalization for much larger systems than that has
been done in previous works. This paper and a compan-
ion paper [14] on the dense limit are the first systematic
study of the spinless fermion model in two dimensions.
We hope that the comprehensiveness of this paper can
not only draw more attention to this so far basically over-
looked model but also serve as a guide for diagonalization
and analytical studies in the dilute limit.
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of the Cornell Center for Materials Research (CCMR) under
the NSF Materials Research Science and Engineering Centers
(MRSEC) grant DMR-0079992. We thank G.S. Atwal for help-
ful discussions.

Appendix A: Physical meaning of T (E)

In this section we give yet another derivation of the t-
matrix which makes more explicit the physical meaning
of T (E,P;q,q′) equation (3.13).

Before we get into a lot of algebra, let us describe
the physical idea. In scattering theory we know that the
Born series is a perturbation series of the scattering am-
plitude in terms of the potential. In Figure 16 we show
the first three terms graphically, where the first term,
the first Born approximation, is particularly simple–it is
the Fourier transform of the potential. We also know that
when the potential is weak the first few terms are an good
approximation to the scattering amplitude, but when the
potential is strong, we need all terms. In this section, we
will show that our t-matrix T (E,P,q,q′) is the sum of all
such two-body scattering terms.

We start with equation (2.15) which we copy here for
convenience,

(E−E(q)−E(P−q))g(q) =
1
N

∑
q′
V (q−q′)g(q′). (A.1)

For q ∈ Q0 we break up the sum over q′ into two terms
and get,

(E − E0)g(q) =
1
N

∑
q′∈Q0

V (q − q′)g(q′)

+
1
N

∑
q′∈Q̄

V (q − q′)g(q′). (A.2)

For q ∈ Q̄ we can rewrite equation (A.1) to get,

g(q′) =
1
N

∑
q′′

V (q′ − q′′)
E − E(q′) − E(P − q′)

g(q′′). (A.3)

Plug equation (A.3) into the second sum in equation (A.2)
and rearrange terms, we get,

(E − E0)g(q) =
1
N

∑
q′∈Q0

V (q − q′)g(q′)

+
1
N

∑
q′′

T2(E,P;q,q′′)g(q′′), (A.4)

where we have defined,

T2(E,P;q,q′′) =
1
N

∑
q′∈Q̄

V (q − q′)V (q′ − q′′)
E − E(q′) − E(P − q′)

. (A.5)

Now break the sum over q′′ in equation (A.4) into two
parts, and we get

(E − E0)g(q) =
1
N

∑
q′∈Q0

V (q − q′)g(q′)

+
1
N

∑
q′∈Q0

T2(E,P;q,q′)g(q′)

+
1
N

∑
q′∈Q̄

T2(E,P;q,q′)g(q′). (A.6)

Plug equation (A.3) into the last term of equation (A.6)
and we get

(E − E0)g(q) =
1
N

∑
q′∈Q0

V (q − q′)g(q′)

+
1
N

∑
q′∈Q0

T2(E,P;q,q′)g(q′)

+
1
N

∑
q′
T3(E,P;q,q′)g(q′), (A.7)

where we have defined

See equation (A.8) above
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(E − E0)g(q) =
∑

q′∈Q0

[
1

N

∑
ij

eiq·Rie−iq′·RjV
(
δij + V Ḡij + V 2(Ḡij)

2 + ...
)]

. (A.13)

Continue this process, we obtain

(E − E0)g(q) =
1
N

∑
q′∈Q0

(V (q − q′)

+ T2(E,P;q,q′) + T3(E,P;q,q′) + ...)g(q′). (A.9)

What we have done here is the traditional perturba-
tion theory using iteration. Equation (A.9) is the Born
series for scattering amplitude. The first term V (q − q′),
the Fourier transform of the potential V (r), is the first
Born approximation. The content of higher order terms
T2, T3,... can be obtained from their definition. Equa-
tion (A.5) says that T2 involves two scatterings under V ,
and equation (A.8) says that T3 involves three scatterings.
Thus the Born series equation (A.9) can be graphically
depicted as the ladders in Figure 16 [60], and it involves
multiple scatterings to all orders. Note that each term in
the Born series is infinite for infinite potential V . Next we
will show that summing all the terms in the series gives the
t-matrix and the potential V cancels out, giving a finite
value.

It is easy to check that

T2(E,P;q,q′) = V 2
∑
ij

eiq·Rie−iq′·Rj Ḡij(E,P), (A.10)

where Ḡij(E,P) is our good old Green function equa-
tion (3.5),

T3(E,P;q,q′) = V 3
∑
ij

eiq·Rie−iq′·Rj (Ḡ(E,P))2ij ,

(A.11)
and

Tn(E,P;q,q′) = V n
∑
ij

eiq·Rie−iq′·Rj(Ḡ(E,P))n−1
ij .

(A.12)
Plug these results into equation (A.9), we get

See equation (A.13) above

Now we come to a formal step,

V
(
I + V Ḡ + V 2(Ḡ)2 + ...

)
= V (I − V Ḡ(E))−1, (A.14)

and the interesting result is that the infinite potential V
cancels out, giving a finite value −Ḡ(E)−1.

If we can do this formal sum, then we get from equa-
tion (A.13),

(E − E0)g(q) =
∑

q′∈Q0

T (E,P;q,q′)g(q′),

which is exactly our momentum space T-matrix equa-
tion (3.12) and T (E,P;q,q′) is exactly our t-matrix equa-
tion (3.13).
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